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SYMBOLS

A area
Ae capture area
Amin minimum duct area normal to the average local flow
Ay local duct area normal to the inlet centerline
b local dimension for vortex generators or bleed hole spacing
CDa additive drag coefficient based on A,
CR contraction ratio :
min
D capture diameter 38.8 cm (15.28 in.)
d local diameter
h height of boundary-layer probe from surface
M Mach number
m mass flow
Moo free-stream mass flow based on 4,
p static pressure
Pp pitot pressure
2 total pressure
Pt, —Pt, .
Apt2 total-pressure-distortion parameter, ma;c_)t min
2
R capture radius
1% ratio of centerbody radius to capture radius
ILQI ratio of cowl radius to capture radius
;C—{ ratio of axial distance measured from the tip of the centerbody to capture radius
XA /A in distance from the centerbody tip to the throat on the centerbody surface
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axial distance measured from the cowl lip
distance from the cowl lip to the throat on the cowl surface

axial distance from centerbody tip to cowl lip divided by capture radius
inlet angle of attack, deg

angle of attack for incipient unstart, deg

circumferential position (0° is at top of inlet)

circumferential position of rotating engine face rake assembly

Subscripts
free stream
inlet lip (theoretical)
inlet lip
local
throat
engine face
total bleed
bleed through the individual zones
bypass
conditions at exit
maximum
minimum

strut




Superscript

() average value

NOTE: The designations for bleed and vortex generator configurations are explained by figures 7
and 8, respectively.




TESTS OF A MIXED COMPRESSION AXISYMMETRIC INLET WITH LARGE
TRANSONIC MASS FLOW AT MACH NUMBERS 0.6 TO 2.65
Donald B. Smeltzer and Norman E. Sorensen

Ames Research Center

SUMMARY

The internal performance is presented for a large-scale model of a mixed-compression
axisymmetric inlet with a translating cowl for the Mach number range 0.6 to 2.65, angles of attack
from 0° to 4°, and a constant total pressure of about 1 atm (a unit Reynolds number of about
8.53X10%/m at Mach number 2.65). The model capture diameter was about 38.8 cm (15.28 in.)
and the length from the cowl lip to the engine face was 2.2 capture diameters. Other features were
the following: a boundary-layer removal system, vortex generators, an engine airflow bypass system,
and cowl support struts.

The supersonic diffuser was designed for Mach number 2.65 by the method of characteristics
with constraints on the contours that gave 59 percent of the capture area at the throat when the
cowl was retracted for transonic operation. The design of the subsonic diffuser prevented reduction
of this high transonic area ratio and provided contours that avoided flow separation.

Various bleed and vortex generator configurations were investigated at Mach number 2.65.
With the best combinations, maximum total-pressure recovery at the engine face was about 91 to
94.5 percent with bleed mass-flow ratios from 4 to 9 percent, respectively, and total-pressure
distortion was less than 10 percent. At off-design supersonic Mach numbers above 1.70, maximum
total-pressure recovery and corresponding bleed mass-flow ratio were about the same as at Mach
number 2.65, but with distortion generally higher (10 to 15 percent). At transonic Mach numbers,
total-pressure recovery was high (above 96 percent) and distortion was low (less than 15 percent)
only when the mass-flow ratio was reduced about 0.02 to 0.06 from the theoretical maximum
(0.590 to Mach number 1.0). To achieve this performance it was necessary to change the bleed and
vortex generator configuration as the Mach number was reduced. As the cowl was translated for
off-design operation, the throat moved downstream on the centerbody; consequently, the
performance was best when the centerbody throat bleed was moved downstream to the vicinity of
the throat. At the higher Mach numbers Me > 2.4), the performance was best with vortex
generators on both cowl and centerbody. However, because of the throat movement, they entered
the supersonic diffuser as the cowl was translated and, consequently, the performance was best
without vortex generators at Mach number 2.3 to 0.6.



INTRODUCTION

Supersonic aircraft require inlet systems capable of efficient operation over a wide Mach
number range. The results of inlet investigations reported in references 1 through 4 showed that
mixed-compression axisymmetric inlet systems could meet this requirement. However, these inlets
provided relatively low transonic airflow, which may not match the flow requirements of some
turbojet engines, severely reducing the propulsion system thrust. This reduced thrust coupled with
inherently high transonic aerodynamic drag would lead to low acceleration and high fuel
consumption. A primary objective of this investigation was to alleviate this condition by designing
an inlet for considerably higher transonic airflow than the previous inlets.

The design Mach number was 2.65. The prinicipal design goals were to provide high
perfomance potential throughout the Mach number range with internal contours that provided high
airflow for transonic operation—and with a short length to minimize the inlet weight. Many aspects
of the design were based on previous experience (refs. 1-4); these are discussed in following sections.

The experimental investigation was conducted with a quarter-scale model in the Ames Unitary
Plan Wind Tunnels. Figure 1 is a photograph of the model mounted in one of these wind tunnels.
The test Mach number range was 0.6 to 2.65 and the total pressure was constant at about 1 atm (a
unit Reynolds number of about 8.53X10%/m at Mach number 2.65). Total-pressure recovery and
distortion at the engine face were measured as a function of bleed and/or engine face mass-flow
ratio. Measurements were also made of bypass mass-flow ratio, inlet sensitivity to unstart (caused by
changes in angle of attack or Mach number), internal surface pressure distributions, boundary-layer
profiles, and pressures to calculate transonic additive drag.

MODEL AND INSTRUMENTATION

Sketches of the model and instrumentation are shown in figure 2, the coordinates of the
internal surfaces are given in table 1, and the coordinates of the struts (upstream of the engine face)
are given in table 2.

The model had a capture diameter of about 38.8 cm (15.28 in.) and was considered to be
about quarter scale. The model components that were remotely controlled during testing were a
translating cowl (for internal area variations), a translating sleeve and fixed plug (for control of the
terminal shock wave position), exits for each bleed zone and the bypass duct, and rotating rakes at
the engine face.

There were two sets of struts (fig. 2(a)): one located just upstream of the engine face (these
struts would normally be used for centerbody bleed removal and cowl support but not on this
model), and one downstream of the engine face (these struts provided ducting for the centerbody
bleed and support for the cowl). In addition, there were four separate bleed zones and a bypass slot
(fig. 2(b)). The bleed zones were isolated to reduce recirculation of the flow from the higher to
lower pressure regions. There were fairings for the bleed and bypass exits to ensure low back
pressures (fig. 2(a)). Finally, there were two locations for vortex generators on the centerbody and
one on the cowl (fig. 2(b)). The centerbody locations were used one at a time.
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Instrumentation, consisting of total and static pressure rakes and static pressure orifices, was
used to measure the internal performance. Rakes, spaced on an area weighted basis (fig. 2(c)), were
used to measure the total-pressure recovery at the engine face (fig. 2(b)) at x/R = 6.8. Pressures for
the computation of the main duct mass flow were measured by six static pressure rakes, each
consisting of two tubes spaced on an area-weighted basis near the main duct exit (fig. 2(a) at
x/R = 15.807). Total pressure rakes were used for measurements in the boundary layer (fig. 2 (b)).
A 10-tube total-pressure rake at the inlet throat measured pressures used in evaluating the
performance of the supersonic diffuser (fig. 2(b)). Measurements from static- and total-pressure
rakes in the centerbody bleed ducts were used to compute the centerbody bleed mass flow
(fig.2(b)). Four rakes, each consisting of five total and three static pressure tubes, were spaced 90°
apart at the station of maximum centerbody diameter. Measurements from these tubes were used to
compute the transonic mass flow.

Static-pressure orifices, located longitudinally along the top inner surfaces of the cowl and
centerbody, extended to the engine-face station (fig. 2(b)). Static-pressure orifices, located
longitudinally on the side of one strut near both walls, extended from the strut leading edge to the
engine face. Orifices were located circumferentially in each bleed and the bypass plenum chambers.
Measurements from these orifices were used to calculate the cowl bleed and bypass mass flows, and
all bleed and bypass plenum chamber pressure recoveries.

DESIGN

General Considerations

Design goals, successful for previous inlet systems (refs. 1-4), were used for the present design.
These include high performance throughout the Mach number range, minimum inlet length
(weight), and low inlet drag. An additional goal, not used previously, was a large throat area for
transonic operation.

The internal contours were considered appropriate for an operational inlet system. However,
other components such as bleed and bypass plenums and exits, and external contours were adopted
from a previous wind tunnel model and were not representative of operational hardware. Design
details of the important inlet-system components follow.

Supersonic Diffuser

The major design goal was to achieve isentropic compression and a uniform throat Mach
number of 1.25 at the design Mach number of 2.65, with contours that gave the largest possible
throat area when the cowl was retracted for transonic operation. An additional goal was to provide
a stability margin! with a controlled expansion to about Mach number 1.4 downstream of the
throat. Based on previous experience, if these goals were achieved, there would be high performance
throughout the Mach number range.

LA resistance to unstart from a sudden decrease in engine airflow demand which drives the terminal shock
wave upstream.



The maximum possible area ratio for transonic operation and the corresponding necessary
critical dimension ( 75,5x/R and ryin/R) were calculated with the method developed in appendix A.
A sample calculation is included in the appendix.

The contours were designed with the aid of the method of characteristics; the computer
program used is described in reference 5. Figure 3 shows the computed results at the design Mach
number of 2.65, including the flow field mesh, static pressure and Mach number distributions on
the cowl and centerbody surfaces, total-pressure recovery and Mach number distributions across the
throat, and the axial locations and values of local surface slopes used in the computer input. The
design goals were closely met: the inviscid total-pressure recovery was 0.9997 and Mach number was
about 1.25 across the throat (x/R =~4.22); the flow expanded to about Mach number 1.40
downstream of the throat (x/R = 4.50); the throat area (A4,;;,/A.) was 0.595 with the cowl
retracted to xh-p/R = 3.663 (at this point the maximum cowl and centerbody diameters are
axially alined).

The procedure for developing these contours is discussed in detail in the following paragraphs.
Special criteria, successful for previous designs, were used for starting points in developing the
contours: (1)a small initial cone angle with its corresponding small flow deflection angle through
the bow shock for high performance (essentially no shock loss) and low spillage drag during
off-design operation, (2) a small initial internal cowl angle for high performance and low external
drag, (3) the cowl lip just downstream of the bow shock to eliminate spillage for operation at the
design Mach number, and (4) an inflection point on the centerbody near the axial location of the
shock wave impingement from the cowl lip at the design Mach number. Previous experience also
gave some insight into the rates of change of surface slope with distance that would not require
“relatively large” boundary layer bleed to control separation. (The computer program used a linear
rate of change of surface slope with distance between input points.)

With initial estimates for these criteria, the remainder of the *“trial” contours were calculated
so that the critical dimensions of maximum centerbody radius (r;,4y) and minimum cowl radius
(F'min) were equal to the computed values and located as shown in the appendix. The flow field was
computed by the method of characteristics, and the solution was ‘‘checked” for performance at the
throat. (The parameters checked included Mach number, pressure recovery, rates of compression,
local expansion regions, etc.) Many iterations of this “trial and check” procedure were required to
develop the final contours, although they are not the only contours that would give the indicated
performance.

Because of compromises necessary for the high internal performance, the final critical
dimensions were not ideal. That is, the critical centerbody dimension (r,,;,/R) was slightly
upstream and the critical cowl dimension (#};,;,/R) was slightly downstream of the throat (fig. 3). In
addition, these ratios were slightly larger and slightly smaller, respectively, than their optimum
calculated values. With these deviations from the ideal, the throat area for transonic operation was
slightly less than theoretically possible. However, this was partially compensated for by the initial
positive cowl angle (1.5°), which increased the minimum area ratio from that with a straight (0°)
cowl. (This positive angle could result in a larger external cowl angle and perhaps higher cowl drag.)

The final contours included no boundary-layer compensation, because previous experience
indicated that a boundary-layer-removal system would closely compensate for displacement effects.




However, in conjunction with the present investigation, experiments were conducted with a cowl
modified to partially account for the boundary-layer displacement thickness. The results, presented
in appendix B, are considered inconclusive.

Cowl Support Struts

Table 2 includes a sketch of the cowl support struts and their coordinates. Three struts were
used, instead of the usual four, because of the possibility of a weight reduction. The struts were sized
to accommodate the expected centerbody boundary layer bleed. However, they were not used as
bleed ducts on this model. At the design Mach number, the expected bleed was 3 percent of the
capture mass flow at a pressure recovery of 20 percent and Mach number of 0.25. This pressure
recovery and Mach number were considered conservative estimates and were based on the work
reported in references 1 through 3. A sharp leading edge was used for the struts because of the high
duct Mach numbers during transonic operation (M ~ 0.7 at the leading edge); the blunt trailing edge
mated with engine guide vanes. The leading edge of each strut was a straight line inclined to the
inlet centerline (fig. 2(b)); the resulting long cowl template provided additional cowl support
although the struts were not load-carrying members on this model.

Subsonic Diffuser

Some of the subsonic diffusers previously designed (refs. 1-4) showed evidence of flow
separation, which was traced to regions where the rates of change of surface slope with distance
were relatively large. Therefore, the choices for the present design were limited to contours with
smaller rates of slope change than those where flow separation had previously been detected. With
this contour limitation, ihe principle objective was to find contours such that the large throat area
for transonic operation (A4,,;,/Ac=0.595 with xlip/R = 3.663) included in the design of the
supersonic diffuser would not be followed by a smaller area further downstream.

The design procedure was first to select centerbody contours with about the maximum rate of
change of slope and cowl contours with smaller rates. A position for the cowl for transonic
operation was noted where there would be no downstream throat. The cowl was then placed in the
design position (xh-p/R = 2.325) to make minor contour adjustments so that there was a continuing
increase in area with distance. Then, the centerbody templates of the struts were located at the
intersection of the contoured portion of the centerbody and the support tube (x/R = 5.65) to avoid
a surface discontinuity; the leading edge of the cowl template was located upstream at the point
where nearly the maximum “acceptable” changes to the cowl surface were required to compensate
for the strut area. This maintained the continuous increase in area with distance. Finally, the engine
face was located just downstream from the base of the struts. The diameter at the engine face was
sized to mate with engines currently under study and provided Mach numbers ranging from 0.27 to
0.51 for free-stream Mach numbers between 2.65 and 1.0, respectively.

After numerous compromises, made at various steps during the above procedure, the final
integrated design was accomplished. It was considered to be about as short as possible—2.2 capture
diameters measured from the cowl lip to the engine face. The resulting area distributions (fig. 4)
show that the final translation distance for operation through the Mach number range increased
from 0.67 capture diameters (xh-p/R = 2.325 to 3.663 based on the supersonic diffuser contours) to
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0.78 capture diameters (xh-p/R = 2.325 to 3.880). However, the corresponding throat area
(A,in/A ) decreased only from 0.595 to 0.590.

With these contours, the throat was not stationary on the cowl or centerbody as the cowl lip
was retracted (fig. 5). On the centerbody (lower curve), it moved steadily downstream until, near
the transonic operating position (xlip/R = 3.75), it moved rapidly upstream to the vicinity of the
maximum diameter. On the cowl (upper curve), the throat moved slowly upstream and near the
transonic operating position (xh-p/R =3.70), it moved rapidly to the vicinity of the lip. These
combined characteristics provided the variation in inlet contraction ratio shown in figure 6.

Bleed System

The total extent of bleed holes in all zones is shown in figure 2(b). Bleed zones 1 and 2 were
located on the cowl and centerbody, respectively, in regions of high pressure gradient, and were
expected to prevent flow separation in the supersonic diffuser. These zones were drilled with holes
with a diameter to capture radius ratio of 0.0125, in a pattern that provided an overall uniform
porosity of 40 percent. Bleed zones 3 and 4 were located (based on previous experience) in the
throat region on the cowl and centerbody, respectively, to provide a variation in mass flow as the
terminal shock wave moved in the throat. Since throat bleed was assumed necessary at all
supersonic Mach numbers, a large expanse of holes was provided in zone 4 (centerbody). However,
in an operational inlet system with a translating centerbody, only a small portion of this zone would
be open at a fixed centerbody position. This could be accomplished by compartmenting this zone
and, with the use of a sliding valve, closing or opening successive compartments as the throat moved
downstream on the centerbody. For this inlet model, the hole pattern in all bleed zones was altered
wtih a plastic resin material; the method used to derive the final bleed patterns is described in the
next major section. Bleed plenum chambers, ducts, and exits, as they would be an operational inlet
system, were not used on this model (see model description).

Bypass System

The bypass system supplies air for several purposes: inlet-engine matching, secondary air
requirements, and auxiliary air for takeoff. The bypass slot, sized for an expected takeoff air
requirement, was located upstream of the engine face in a region of nearly constant static pressure,
thereby lessening the possibility of flow distortion and recirculation. The rounded lips of the slot
were designed to accommodate takeoff doors and a secondary airflow system, although these (as
well as operational bypass plenum chambers and exits) were not provided on this model (see model
description).

Vortex Generators

Vortex generators were necessary to avoid high total-pressure distortion at the engine face
which, from previous subsonic diffuser experience, occurs with rapidly diverging surfaces. They
were located downstream of the throat bleed at the design Mach number to induce the mixing
action where the boundary layer was relatively thin (fig. 2(b)). However, vortex generators at this
location on the centerbody would be in the supersonic flow field with relatively little cowl
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translation and will cause performance penalties. Therefore, an alternative location was also chosen
farther downstream (fig. 2(b)), at which the vortex generators enter the supersonic flow field at a
lower Mach number and hence, the penalties might be less.

The height of the vortex generators was greater than that previously used so that material
could be removed during testing if smaller generators were needed. At the alternate (downstream)
location on the centerbody, the height was greater, because this location was considerably
downstream of the throat bleed at the higher free-stream Mach numbers, and therefore the
boundary layer would be thicker. The spacing between adjacent generators was chosen for
uniformly mixed flow at the engine face. Other design details were based on the work in
reference 6.

TEST PROCEDURE

Tests were conducted in the 8- by 7-, 9- by 7-, and 11- by 11-ft test sections of the Ames
Unitary Plan wind tunnels. Data were obtained over the transonic and supersonic Mach number
ranges 0.6 to 1.1 and 1.55 to 2.65, respectively. Most testing was done at 0° angle of attack,
although, some data were recorded at angles up to 4°.

Supersonic Test

At Mach number 2.65, the hole pattern in each blzed zone was varied, and each variation was
tested at different contraction ratios (positions of the cowl lip). The data were recorded using the
exit plug to change the position of the terminal shock wave. In this way, many overall bleed
configurations were found where the performance was high. Three configurations (A, C, and B-1),
representative of the available range of tradeoffs of bleed versus pressure recovery, were selected for
more detailed investigation. Configurations A and C (fig. 7(a)), with relatively high and low bleed
flow, respectively, were tested only at Mach numbers 2.65 and 2.60. Configuration B-1 and its
variations (fig. 7(b)) were tested at Mach numbers 2.65 to 1.55. Each variation was tested over a
range of Mach numbers to find the Mach number for the highest performance in terms of bleed
VEIsus pressure recovery.

At 0° angle of attack and with zero bypass, the supercritical performance was measured for
various contraction ratios (positions of the cowl lip) at each Mach number. At selected points on the
performance curves of pressure recovery versus mass flow, the performance was measured (fixed
inlet geometry) as the angle of attack or Mach number was changed, and the total pressure variation
at the engine face was measured with the rotating rakes. In addition, at the contraction ratio for the
best supercritical performance, performance was measured with various fixed bypass exit areas.

Many of the measurements just described were made with various vortex generator
configurations. All configurations with vortex generators had them in the forward location on the
centerbody as shown in figure 2(b), except configuration D where they were at the alternate
location. The alignment and spacing of all configurations is shown in figure 8. No single
configuration was tested at all Mach numbers.




The combinations of bleed and vortex generator configurations and the Mach numbers where
they were tested are shown in table 3. The results reported are considered fairly representative of all
data and, hence, data from all of these combinations are not presented.

Transonic Test
At transonic Mach numbers, the bleed and bypass exits were always closed. Data were
recorded with and without vortex generators, at 0° angle of attack for several positions of the cowl
lip, and at other angles for the position where the largest mass flow was measured. In addition,

variations in total pressure at the engine face were measured with the rotating rakes for a few
conditions.

MEASUREMENT TECHNIQUES AND ACCURACY

The estimated accuracy of the primary parameters is given below.

Parameter Accuracy

Balpr +0.005

mb11_4/m°° + .003

mbp/ Moo + .02

a + .10°

P/p .2

My, *+ .005

m;/Moo + .02 (@ =0° to 2°)® (transonic tests)
my/Meo + .02 (= 0° to 2°)® (supersonic tests)

3At angles of attack larger than 2°, mass-flow ratio (m,/meo and mj/meo) may be in error by £0.050 or more
because of increased flow nonuniformity.

The measurement techniques and accuracies of all parameters except mass-flow ratio have been
well established from many tests at the Ames Unitary Plan wind tunnels. For mass-flow ratio,
however, the calibration procedure was not “conventional,” and the accuracies, although confirmed
from previous tests (refs. 1-3), are not as well established. For this reason, the technique for
calibrating the mass-flow measurements is described in detail.

For supersonic Mach numbers, the mass-flow ratio entering the inlet is shown in figure 9 as a
function of the cowl lip position (xh-p/R). These results were calculated with a modified form of the
computer program described in reference 5. They are quite accurate when the cowl lip is near the
bow shock (m,/meo near 1.0), and since mass-flow ratios were calibrated under these conditions,
there was an accurate quantity for comparison.

Mass-flow ratio at the engine face (m,/moo) was computed from static-pressure measurements
near the main duct exit, a choked main-duct exit area, and a calibration factor, which corrected the
computed ratio so it was equal to the entering mass-flow ratio (mgp/Mmoo) less an estimated bleed
mass-flow ratio (about 0.10 (m,/mso) at critical pressure recovery). Even though the mass flow




(m,/me) thus computed was in error, the increments were assumed to be quite accurate. These
increments were used to calibrate the bleed mass flows.

The cowl bleed mass-flow ratios (zones | and 3) were computed with plenum chamber
pressures and known choked exit areas, and the centerbody flows (zones 2 and 4) with static and
total pressures in the bleed ducts. In turn, each bleed exit was closed and the main duct pressure
was raised to a near-critical condition by reducing the flow through the other bleed zones, closing
the plug at the main duct exit, and increasing the inlet contraction ratio. Then the exit of the bleed
to be calibrated was opened incrementally and the mass flow was computed and corrected with a
calibration factor to make it equal to the increments in the main duct mass flow (Am, /moo). Small
additional corrections were required because as each bleed exit was opened, the bleed flow through
the other zones changed. Errors caused by these corrections were eliminated by iterating many
calibrations over a range of variables (such as bleed configuration, contraction ratio, exit plug
position). Bleed calibration factors were determined only at Mach number 2.65 and were used at
other supersonic Mach numbers because the bleed mass flow was small (3 percent or less for each
zZone).

After the bleed mass flows were calibrated, a correction was made to the calibration factor for
the mass flow at the engine face so that the computed mass flow (m, /o) plus the total bleed mass
flow (mp)/meo) equaled the entering mass flow (my/moo). This correction was small because the
measured and originally estimated bleed mass flows were quite close. However, it was found that
this calibration factor was influenced by the total pressure distortion at the engine face, and hence
measurements of mass flow at the engine face (1m,/moo) were less accurate than bleed mass flow.

Bypass mass-flow ratio (m bp/moo) was computed with plenum chamber pressures and a known
choked exit area. The calibration procedure was identical to that for bleed mass flow. Because the
bypass mass flow was large, however, the flow was calibrated at all supersonic Mach numbers with
accuracies about equal to that for the mass flow at the engine face.

Bleed and bypass mass flows were calibrated only at 0° angle of attack, but are probably as
valid at small angles (up to 2°). At larger angles, flow asymmetry could cause circumferential
circulation in the plenum chambers, which could reduce the accuracy of the calibrations.

At transonic Mach numbers (0.6-1.1), the mass flow entering the inlet (;/moo) was computed
from the average of static and total pressures, measured across the duct at the station of maximum
centerbody diameter. No calibration factor was applied to the computed results. The measure-
ments from these rakes, the measured pressures on the centerbody, and an estimated friction drag
term were used to compute the additive drag (ref. 7).

RESULTS AND DISCUSSION

The principal performance parameters considered in this investigation are engine-face pressure
recovery and distortion. At supersonic speeds these parameters generally are presented as functions
of bleed mass-flow ratio (mpj/moc), because inlet system efficiency involves the trade of pressure
recovery for bleed drag. For this reason the more common function, engine-face mass-flow ratio
m, /Moo, is not used but can be calculated by merely subtracting the bleed mass-flow ratio from the
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theoretical capture mass-flow ratio (fig. 9). At transonic speeds the principal parameters are
presented as functions of throat mass-flow ratio (mj/moo) because it is more accurate. Note,
however, that m;/m, = m,/me because the bleed and bypass exits were closed. All results are
presented in figures 10 through 60; table 4 is an index to the figures.

The discussion of results is divided into four parts: development of the bleed configurations at
Mach number 2.65, data for three bleed configurations at Mach numbers 2.65 and 2.60 (because the
inlet Mach number may vary slightly, depending on the location of the inlet on the vehicle, results
at Mach numbers slightly less than design are equally important), limited results at lower supersonic
Mach numbers, and transonic results.

Bleed Configuration Development at Mach Number 2.65

The objective was to develop bleed configurations that permitted both sturted inlet operation
at the design position of the cowl lip with surface-pressure distributions approximating the inviscid
theoretical values. Operation at the design position is important, since under these conditions the
bow shock wave intersects the cowl lip, thereby eliminating spillage drag. Matching of the
theoretical and experimental pressure distributions was considered important for high internal
performance and acceptable tolerance to transient disturbances (i.e., changes in angle of attack or
Mach number that occur before an inlet control system can respond with changes in geometry).

Theoretical and experimental static-pressure distributions are shown in figure 10, and
corresponding pitot pressure profiles at various cowl and centerbody stations, including the throat,
are shown in figure 11 for four bleed configurations. Note the different locations for bleed zones 1
and 2 shown in figure 10. The throat bleeds (zones 3 and 4) were not changed during this portion of
the bleed development. Results with bleed zones 1 and 2 concentrated upstréeam of shock wave
impingements on the cowl and centerbody, respectively, are shown in figures 10(a) and 11(a). These
initial bleed locations were chosen because similar locations were adequate for the inlets reported in
references 1 through 3. However, with bleed at these locations, the inlet unstarted near the position
of the cowl lip (contraction ratio) indicated on figure 10(a) and, therefore, could not be contracted
to the design position (x}jp/R = 2.325). Theoretically, the inviscid characteristics lines between the
limits labeled 1 and 2 (see sketch, fig. 10(a)), which originate on the cowl between x/R = 2.364 and
3.234, coalesce on the cowl between x/R = 4.02 and 4.08. In the actual flow, this coalescence was
stronger due to boundary-layer displacement effects. In fact, coalescence was so strong it caused a
severe adverse pressure gradient with subsonic flow between x/R = 4.0 and 4.1, and hence more
contraction probably caused separation and the inlet unstarted. In addition, with bleed at these
locations, there was nonuniform compression in the throat (x/R =~ 4.25) as shown by the static
pressure variation, and very poor inlet tolerance to transient disturbances (changes in angle of attack
of less than 1° unstarted the inlet). However, with these bleed locations there was a satisfactory
pitot pressure profile in the throat (fig. 11(a)). The low pressure near the cowl may represent a high
Mach number, which is consistent with the low cowl surface static pressure in the throat or a
relatively thick cowl boundary layer when compared to that on the centerbody.

When the centerbody bleed in the supersonic diffuser (zone 2) was moved upstream (as far as
possible on this model), the inlet remained started with the cowl at the design position
(xlip/R = 2.325). The resulting surface pressure distributions and pitot pressure profiles are shown
in figures 10(b) and the lower half of 11(a), respectively. With this location for bleed zone 2, there
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was still a severe adverse pressure gradient on the cowl (x/R =~ 4.0) and, in addition, there was a
severe gradient on the centerbody (x/R =~ 4.0). Also the tolerance to transient disturbances was
about the same as for the previous configuration while the compression in the throat (x/R ~ 4.22)
was somewhat more uniform. However, unlike the previous configuration, the performance at the
throat was relatively poor, as evidenced by the low pitot pressures (fig. 11(a)). This probably
occurred because of fairly strong shock waves resulting from excessive coalescence. In addition,
there was considerable flow asymmetry in the throat, as evidenced by the different pitot pressure
readings from the throat rake (near the centerbody) and the centerbody boundary layer rake at
x/R = 4.222, which were located 180° apart.

When the bleed on the cowl surface (zone 1) was distributed over a wider area with the
centerbody bleed (zone 2) the same as in the previous configuration, the adverse pressure gradients
on both cowl and centerbody were greatly reduced, and the regions of subsonic flow were
eliminated (fig. 10(c)). In addition, the tolerance to transient disturbances increased—the inlet
remained started at angle of attack up to 2°. However, at the inlet throat (x/R ~4.22), the
compression was still nonuniform. The corresponding pitot pressures are shown in figure 11(b).
Measured pressures were in substantial agreement with theory across most of the throat. As with the
previous configurations, the boundary layer in the throat was relatively thicker on the cowl than on
the centerbody.

When the bleed was distributed for both zones 1 and 2 (fig. 10(d)), the pressure gradients were
reduced further. Moreover, the measured pressures were in better agreement with theoretical
predictions, the compression in the throat x/R = 4.22) was more uniform, and the inlet tolerance to
transient disturbances was increased (up to 2.5° angle of attack without unstarting). However, the
pitot pressure and throat profiles were not substantially different than those for the previous
configuration (fig. 10(c)). Also, there was still some flow asymmetry in the throat near the
centerbody.

Bleed flow rates for the configurations just discussed were excessive (10-15 percent at critical
pressure recovery, i.e., just before the inlet unstarts) and, therefore, are not presented. However, the
total bleed was somewhat less for the distributed pattern (fig. 10(d)) than it was for the others
(fig. 10(a)-10(c)). To reduce the bleed flow while maintaining high performance at the engine face,
many additional distributed patterns were investigated and the throat bleed (zones 3 and 4) was
changed. Three of these configurations, representative of the available range of performances in
terms of bleed versus pressure recovery, were selected for more extensive investigation. (These
configurations, A, B-1, and C, are shown in fig. 7.) With bleed configuration A, both maximum
pressure recovery and corresponding bleed flow were high (configurations with higher bleed rates
did not significantly increase the maximum pressure recovery); with configuration B-1, maximum
pressure recovery and the corresponding bleed flow were slightly lower; and with configuration C,
maximum pressure recovery was somewhat lower still and the corresponding bleed flow was about
the lowest that allowed started inlet operation near the design contraction ratio.

Theoretical and experimental surface pressure distributions and throat profiles are shown in
figure 12 for bleed configuration A (highest total bleed flow but the best agreement with inviscid
predictions). The hole pattern in the supersonic diffuser (zones 1 and 2) was similar to that shown
in figure 10(d) (except for the gap in bleed zone 2). In the throat (zones 3 and 4), the bleed was
concentrated near the minimum area. Near the cowl and centerbody surfaces, the pitot pressures in
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the throat were somewhat less than those for the configuration shown in figure 10(d). However,
they were in substantial agreement with theory across most of the throat.

Performance at Moo = 2.65 and 2.60

Supercritical performance— At Mach number 2.65, the performance with the three bleed
configurations was determined for various positions of the cowl lip—that is, contraction ratios.
These results are shown in figures 13(a) through (c). With configurations A and B-1, the inlet
remained started at the smallest value of cowl lip position (largest contraction ratio) possible with
this model and therefore could be operated at design conditions (xh /R = 2.325). With
configuration C, however the inlet unstarted near the smallest value of cowl lip position
(xJip/R = 2.365) indicated on figure 13(c) because of the low bleed, and thus could not be operated

d%mgn conditions (xhp/R 2.325) as a started inlet.

For all configurations, the distortion was considered low (<10 percent) over the useful
supercritical operating range. However, for configuration C, this range was small because, with the
low bleed rates, the inlet unstarted before the terminal shock wave moved into the throat.

Tolerance to transients and stability margin— For most results, maximum and critical pressure
recovery coincided; that is, maximum pressure recovery occurred just before the inlet unstarted.
However, the inlet cannot normally operate at this point because it would unstart if a very small
transient disturbance occurred (disturbances occurring so suddenly that the control system would
have no time to respond with changes in geometry, such as opening the bypass and/or increasing the
throat area). Therefore, the performance at supercritical conditions is of paramount importance.
Possible operating points, where an acceptable stability margin is available for some missions, are
indicated by the filled-in symbols in figure 13(a) through (c). At these points, the inlet unstarted at
the angles of attack or Mach numbers shown in the tables. For instance, with bleed configuration A
and the inlet operating at the design point— Xlip /R = 2.325 and 0° angle of attack—the angle of
attack could change to 2° before the inlet unstarted Although these values may not represent the
tolerance to sudden changes, because the changes could only be made slowly, they do indicate
possible incremental improvements as the cowl lip is retracted (reduced contraction ratio).

The choice of a supercritical operating point also provides an unstart stability margin. For
example, for the point just discussed the pressure recovery and bleed mass-flow ratio can increase
by 0.038 and 0.026, respectively, before the inlet unstarts. This means that the corrected weight
flow demanded by an engine could decrease by 0.06 to 0.07 without unstarting the inlet.2 If the
inlet was operated at a higher pressure recovery and bleed mass flow than indicated by the filled
symbols, the stability margin would decrease, and conversely, if operated at lower recovery and
bleed, the stability margin would increase. However, the tolerance to a change in angle of attack or
Mach number would not necessarily increase with the operating point at a lower pressure recovery.

With configuration B-1, the characteristics are quite similar to those with A although the
transient tolerance and stability margin are less. With configuration C, however, these parameters
are quite small. Thus, bleed configurations A and B-1 could provide sufficient stability margin and
tolerance to transient disturbances for some missions with the ‘““natural” characteristics of the inlet

2The change in corrected weight flow is approximately the sum of the increase in bleed and pressure recovery.
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system, whereas with configuration C, some auxiliary device would probably be required to avoid
unstart. All stability margins and transient tolerances apply only singly; two or more simultaneous
disturbances would reduce the indicated values.

Similar data for Mach number 2.60 are shown in figures 14(a) through (c). For started
operation at this Mach number, the cowl lip was retracted slightly (decreased contraction ratio),
therefore there was some spillage. However, pressure recovery, distortion, bleed mass flow, and
stability margin were about the same as at Mach number 2.65. The tolerance to transients was also
about the same as at Mach number 2.65, although these data are shown only for configuration B-1.

Cowl bleed back pressure— For the results shown in figure 13 (Moo = 2.65), the bleed plenum
exit areas were such that the pressure ratio across the bleed holes indicated choked conditions.
Similar results, with smaller cowl plenum exit areas (bleed holes not choked), are shown in figure 15
for bleed configuration A. (The data indicated by the circles are repeated from fig. 13). At a
constant pressure recovery, bleed mass flow decreased significantly for all reduced cowl exit area
combinations (curves represented by all symbols except circles). However, the inlet tolerance to
changes in angle of attack also decreased when operating at the points represented by the filled
symbols. These points represent a slightly different stability margin for each configuration; for an
identical margin, the differences in unstart angle of attack might be less, but pressure recovery
would be lower.

Performance with changes in angle of attack or Mach number— The limits of transient
disturbances that could occur without unstarting the inlet were discussed previously. In addition,
when these disturbances do occur, pressure recovery must not decrease nor distortion increase
significantly. The changes in pressure recovery, distortion, and bleed mass flow that occurred when
the angle of attack or Mach number was changed are shown in figure 16(a) and (b). At 0° angle of
attack, the data are the filled-in symbol data from figures 13 and 14. In general, as the Mach
number was decreased, pressure recovery and bleed mass flow increased because the terminal shock
wave moved upstream, while distortion decreased. As the angle of attack was changed, pressure
recovery decreased while distortion and bleed mass flow increased. However, neither angle of attack
nor Mach number changes caused large performance penalties.

Distortion— The total pressure distortion shown in figure 16 was calculated with the rakes at
the engine face located between the support struts (see fig. 2(c)). Distortion is more accurately
determined from detailed surveys with the rotating rakes. Circumferential total pressure profiles,
from which the distortion parameter (Ap;_ ) can be calculated, are plotted at various radial distances
from the inlet centerline in figure 17 for bleed configuration A and for conditions corresponding to
the chosen operating point (filled triangles in fig. 13(a)). Profiles are shown for 0° angle of attack
and for positive and negative angles near those where the inlet unstarted. The pressures at 60°,
180°, and 300° were measured with three rakes behind the support struts; these pressures are
considered static since they were the same as the local surface static pressures. The filled symbols
indicate pressures used to calculate the listed pressure recovery and distortion. Distortion calculated
by considering all pressures (excluding statics behind the struts) would be about 1 to 2 percent
higher, and pressure recovery similarly computed would be about the same as the listed values.

At 0° angle of attack, the pressures were relatively low near the cowl surface
(r/R = 0.837 —0.954), but were consistent with the low performance of the supersonic diffuser near
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the cowl surface noted earlier. Furthermore, there were total-pressure gradients near one side of
each strut from r/R =0.623 to 0.954. The reason for these gradients is not known. Without the
gradients, circumferential distortion would be very low and most of the distortion would be radial.

Profiles are shown at both positive and negative angles of attack (figs. 17(b) and (c)) because
the support struts were asymmetric in the angle-of-attack plane. At both positive and negative
angles, circumferential distortion was higher than at 0°. Moreover, at both positive and negative
angles, there were regions of separated flow near the cowl surface. (The flow is considered to be
separated when the total and static pressures are equal.)

Static pressure distributions— Static pressure distributions, recorded as the terminal shock
wave moves upstream, may reveal unnecessary compression or expansion regions, which reduce the
compression efficiency and the effectiveness of the bleed system. Typical distributions, with
sketches of the cowl and centerbody geometry alined with these distributions, are shown in
figure 18 for Mach numbers 2.65 and 2.60.

At both Mach numbers the inlet remained started with the terminal shock wave well upstream
of the throat. (The terminal shock was located where p/peo =~ 10 to 12.) Moreover, the terminal
shock wave feeds farther upstream through the boundary layer. These shock wave phenomena give a
greater change in bleed mass flow and hence a greater stability margin than would be expected from
inviscid considerations.

In the subsonic diffuser, the flow expands smoothly on the centerbody to the engine face
except for the sudden drop at x/R =~ 4.7, which is probably caused by the vortex generators,
although there is no comparable drop on the cowl. However, on the cowl, the flow compresses
locally at x/R =~ 5.9. Since the contours were designed for a continuous area expansion, the reason
for these local compressions is not understood.

Static-pressure distributions at angle of attack must be considered in control system design.
Cowl static-pressure distributions, with the inlet operating supercritically, are shown in figure 19 for
0° and *1.3°, corresponding to leeward and windward pressures, respectively. At angle of attack,
the leeward pressure gradient in the supersonic diffuser increased and the windward gradient
decreased. At the same time, the terminal shock wave moved slightly downstream on the leeward
and upstream on the windward side. As a consequence, this flow asymmetry would require that
flow sensors be located at multiple circumferential positions.

Changes in static-pressure distributions as the Mach number decreases must also be considered
for control system design. Figure 20 shows centerbody static-pressure distributions as the Mach
number was decreased from 2.65 to 2.58. For small decreases in Mach number, the terminal shock
wave was nearly stationary (p/peo = 10-12). However, near the Mach number where the inlet
unstarted (Moo = 2.58), the terminal shock wave moved upstream, resulting in a small region of
subsonic flow upstream of the throat.

Bleed mass flow and pressure recovery— The mass flows and corresponding pressure recoveries
in the plenum chambers for the individual bleed zones are required to determine the drag of the
bleed system. These quantities are shown in figures 21 through 24 and correspond to the
supercritical performance shown in figures 13 and 14. In general, the change in total bleed flow
results from changes in all zones as shown in figures 21 and 22 for Mach numbers 2.65 and 2.60,
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respectively. As the terminal shock wave moved upstream, changes first occurred in zones 3 and 4
(throat bleed), and as the shock wave moved further upstream changes occurred in zones 1 and 2
(supersonic diffuser bleed). The advantage of changes in bleed in all zones is a larger stability margin
compared to a system where only the throat bleed changes. The corresponding plenum chamber
pressure recoveries are shown in figures 23 and 24 for Mach numbers 2.65 and 2.60, respectively.
These pressures would be considerably higher, with no reduction in the measured mass flows, if the
bleed exit areas were reduced so that the pressure ratio across the holes at critical conditions was
just sufficient to choke the flow through the holes. The data in figures 23 and 24 show that if the
inlet is operated supercritically, the bleed plenum chamber pressure recovery will be reduced
considerably. That is, for critical (maximum) conditions (fig. 23(a)) the plenum recovery for bleed
zone 3 was about 35 percent; if the pressure recovery at the engine face was reduced, say to 91
percent to satisfy stability margin requirements, the plenum recovery would be only about 20
percent, considerably less than would be possible with no control margin requirement.

The effect of reduced cowl bleed plenum exit areas on the supercritical performance is shown
in figure 15 and was discussed previously. The individual cowl bleed mass flows and plenum
chamber pressure recoveries corresponding to these results are shown in figure 25. (The unstart
angles of attack shown in figure 15 are repeated.) In some cases, the plenum pressure recovery was
increased at critical conditions without reducing the mass flow. For instance, compare the curves
indicated by the circles and right triangles for zone 1; at critical conditions, the plenum recovery
was increased 0.04 while the mass flow remained nearly the same. However, many more
combinations of exit areas would have to be investigated to find those that gave the highest plenum
recovery while maintaining the required inlet performance.

Bypass— The previous discussion considered only results with the bypass exit closed. At the
design Mach number, the bypass serves several purposes: to provide small mass flows for engine
cooling requirements, to provide matching of the inlet-engine airflow, and to remove large mass
flows in the event of a serious engine malfunction. Therefore, high pressure recovery and low
distortion at the engine face, over a large range of bypass mass flows is important. Figures 26 and 27
show the inlet performance, as a function of mass flow at the engine face, for various bypass exit
area ratios. As was the case with zero bypass, pressure recovery was high and distortion was low
over a range of supercritical operation for all bypass exit area ratios. A natural consequence of
operation with bypass is that the stability margin increased (change in mass flow plus pressure
recovery from operating to critical conditions). This occurs because, in addition to changes in bleed
and pressure recovery, there were changes in bypass as the terminal shock wave moved upstream.

The bypass mass flow and plenum chamber pressure recovery are required to calculate bypass
drag. These quantities are shown in figures 28 and 29 for the supercritical performance data just
discussed. At a constant total pressure recovery, the bypass plenum recovery is nearly constant for
mass flows of about 15 percent or less, and decreased for larger mass flows.

Angle of attack— The previous discussion of performance at angle of attack was confined to
small angles where no change in the geometry at or near design conditions was required for started
operation. At larger angles, the contraction ratio must be reduced (xj;,/R increased) for started
operation. When operating under these conditions, an engine can tolerate rather low inlet pressure
recovery although the engine performance is reduced, but to avoid compressor stall it is important
that distortion not be excessive.
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Circumferential total pressure profiles are shown in figure 30 for +4° angle of attack. At both
angles, pressure recovery was considered acceptable while distortion was considered high. (Sustained
engine operation with this distortion could cause thrust loss and/or stall.) However, for this cowl lip
position (xlip/R = 2.981), the centerbody bleed was well upstream of the throat; on an operational
inlet system, the centerbody bleed would remain near the throat as the centerbody was extended,
and hence the angle of attack performance might improve.

Vortex generators— For the performance discussed above, vortex generators were located on
the cowl] and upstream on the centerbody (configuration AA). At this centerbody position they
entered the supersonic flow field when the cowl was translated for off-design operation and thus
were expected to cause performance penalties. For this reason, the performance was measured for
other configurations with smaller generators that might reduce the disturbance in the supersonic
flow field (configuration CC), with the centerbody generators moved downstream to enter the
supersonic stream at a lower Mach number where penalties might be less (configuration DA), and
without vortex generators if no configuration with them was acceptable at lower Mach numbers
(configuration 00). The performance with these configurations is shown in figures 31 and 32.
Pressure recovery was about constant for all configurations with vortex generators, but distortion
was low (<10 percent) over the useful supercritical operation range only with AA. Without vortex
generators (fig. 31 (a)), the supercritical pressure recovery at a constant bleed mass flow decreased 1
to 2 percent and the corresponding distortion was considerably higher than with AA. This high
distortion was caused by separation on the cow! shown by the radial total pressure profiles in
figure 33. At maximum pressure recovery, there is no separation without vortex generators, and
therefore the generators reduce distortion only moderately. However, at supercritical conditions
(fn',2 /ptoo ~ (0.91,), the flow is separated on the cowl without vortex generators; thus distortion is
considerably lower with generators.

Off-Design Supersonic Performance

Operation at off-design supersonic Mach numbers (M = 2.65 to 1.55) required translation of
the cowl, and, as this was done, the throat moved downstream on the centerbody. This throat
movement required alteration of both the centerbody bleed hole pattern and vortex generator
configuration for good performance. However, because these alterations were made manually, only
a limited number were investigated, and hence the best configurations were not necessarily found.

Maximum performance— Because performance penalties were found when the vortex
generators entered the supersonic flow field as the cowl was retracted, they were removed for much
of the investigation. The maximum pressure recovery and corresponding distortion and bleed mass
flow that resulted with the vortex generators removed are shown in figure 34. In the bleed
configuration key shown in figure 34, the numbers 1 through 4 indicate centerbody throat bleed
moved progressively downstream (see fig. 7(b)). In addition, the designation B'indicates additional
holes opened in zone 2. Each configuration was tested over a range sufficient to find the Mach
number for the highest performance. The Mach number for maximum pressure recovery decreased
as the bleed in zone 4 was moved downstream. Because of the low surface pressures, bleed mass
flow was relatively low for configuration B-4, which could explain the relatively low pressure
recovery and high distortion.
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Supercritical performance— Supercritical performance, corresponding to the maximum
performance in figure 34, is shown in figure 35 for Mach numbers from 2.56 to 2.0. As at the design
Mach number, maximum and critical pressure recovery coincide. That is, maximum pressure
recovery occurred just before the inlet unstarted for all configurations. However, the bleed
configuration that gave the highest critical pressure recovery at each Mach number did not
necessarily give the best supercritical performance. For instance, at Mach number 2.50 (fig. 35(b)),
the critical pressure recovery was highest with bleed configuration B-2 while at supercritical
conditions, say 6 percent bleed, the best performance was with configuration B-1. At critical
conditions for most configurations, distortion was 10 percent or less, while supercritically it
increased significantly.

Vortex generators— A number of vortex generator configurations were investigated in an
attempt to reduce the high distortion at supercritical conditions without vortex generators. These
results are shown in figures 36 through 44. (Figure 8 gives a key to the vortex generator
configurations.) The basic configuration denoted AA was tested at Mach numbers 2.65 and 2.60.
The other configurations, tested at lower Mach numbers, involved a variation in circumferential
spacing (configuration B), height (configuration C), or axial location on the centerbody (configura-
tion D). Although no single configuration was tested at all Mach numbers, some conclusions about
their relative merits can be drawn. The lowest distortion and best operating point (bleed versus
pressure recovery at supercritical conditions) was obtained with a relatively dense spacing of vortex
generators located just downstream of the throat on both cowl and centerbody (configuration CC,
figs. 36(b), 37(b), and 38(b)). However, when this or any other configuration with vortex
generators on the centerbody entered the supersonic flow field, distortion was high and pressure
recovery relatively low (e.g., figs. 42(b), 43, and 44). With vortex generators on the cowl only
(configurations OA, OB, and OC), distortion and pressure recovery were generally about the same
or slightly lower than without vortex generators (e.g., figs. 37(c), 38(c), 39, 40, . ..). Overall, this
investigation showed that the best overall performance throughout the Mach number range was
obtained without vortex generators (configuration 00).

The relative effectiveness of the various vortex generators configurations is shown in figure 45
by radial total pressure profiles from a typical rake at the engine face. These profiles show that
vortex generators have effects that depend on the shape of the profile without vortex generators.
When this profile is relatively “full” near either wall (e.g., fig. 45(c) or (d) near the cowl), vortex
generators on that surface reduce pressure recovery considerably. When the profile without vortex
generators is not “full” near a wall (e.g., fig. 45(a) or (b) near the centerbody for the point labeled
“supercritical”), vortex generators can reduce distortion and can increase pressure recovery. When
the profile without vortex generators is moderately “full” (e.g., fig. 45(a) at maximum pressure
recovery) near either wall, vortex generators reduce distortion and pressure recovery only slightly.
From these results, it was expected that vortex generators downstream on the centerbody would
have reduced the distortion at Mach number 2.10 (fig. 45(c)), because they were in the subsonic
diffuser. This was not the case, however—perhaps because they were too high (fig. 8). With
centerbody generators in the supersonic diffuser (fig. 45(d)), distortion was considerably higher and
pressure recovery considerably lower than without vortex generators, although there was no
evidence of separation for either configuration.

Circumferential variations in total pressure are more important than radial because of the
relatively greater sensitivity of engines to the former. Circumferential variations are shown at Mach
number 2.56 in figure 46(a), (b), and (c) for configuration 00, for configuration BB, and for
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configuration CC, respectively. Pressures at 60°, 180°, and 300° are considered to be static, as
previously noted in the design point data. Without vortex generators, the variation in pressure at a
fixed radius was small. Therefore, the indicated distortion (Apt =0.152) was mostly radial.
However, the flow was almost completely separated (static and total pressure equal) near the
centerbody (7/R = 0.429 and 0.534), and there were extensive regions of low pressure between the
struts at /R = 0.623, 0.701, and 0.773.

With vortex generator configuration BB or CC, the pressures were randomly distributed at each
radius, but circumferential distortion was generally low. The decrease in indicated distortion
(Apt = 0.144 and 0.128 for configurations BB and CC, respectively) was due to an increase in the
minimum measured pressure and a decrease in the maximum. With configuration BB, the region of
separated flow was small (#/R = 0.429 near 300° strut) and with CC, separation was eliminated. In
addition, unlike the profiles without vortex generators, there was considerable flow asymmetry at
most radii for both configurations. Because of this asymmetry, it is concluded that even though
configuration CC gave the best inlet operating point (lowest bleed and distortion at a constant
pressure recovery), the mixing induced by the vortex generators was incomplete, hence performance
might be improved considerably with other vortex generator configurations.

Circumferential total-pressure profiles for Mach numbers 2.10 and 1.75 are shown in figure 47
for configurations B-3 and B4, respectively, and vortex generator configuration 00; these
combinations gave the highest pressure recovery and lowest distortion at these Mach numbers. The
profiles are for supercritical operation at Mach number 2.10 and for critical at Mach number 1.75
because the inlet was self-starting (i.e., no change in geometry was required to restart the inlet). At
Mach number 2.10 (fig. 47(a)), the profiles are similar to those without vortex generators at Mach
number 2.56 (fig. 46(a)). That is, there were regions of low pressure between the struts at
r/R = 0.429 to 0.773. However, at Mach number 2.10, the flow was not separated at radii near the
centerbody as it was at Mach number 2.56. Thus, the circumferential distortion was quite low, and
the indicated distortion (Apt = 0.114) was mainly radial. At Mach number 1.75, the profiles are
much like those at Mach number 2.10, except for regions of low pressure near the top of the duct.
These low pressure regions meant that circumferential distortion was somewhat higher than at Mach
number 2.10.

Transient performance— As at the design Mach number, the inlet must remain started with
acceptable pressure recovery and distortion when transient disturbances are encountered. The
effects of angle of attack on the principle performance parameters with the inlet started are shown
in figure 48. At all Mach numbers, angles slightly larger than those shown unstarted the inlet, except
Mach number 1.75, where the inlet was self-starting and data were recorded at angles where the
terminal shock wave was external. At all Mach numbers, pressure recovery decreased and the
corresponding distortion and bleed mass flow increased with changes in angle of attack from zero.
The asymmetry of these changes at positive and negative angles could be caused by the asymmetry
of the struts.

Static pressure distributions— At off-design conditions, static pressure distributions are
important for the same reasons discussed in the section dealing with design Mach number static
pressure distributions. Centerbody static pressure distributions at 0° angle of attack are shown in
figure 49 as the terminal shock wave moved upstream. At Mach number 2.56 (fig. 49(a)) the
compression is nearly continuous upstream of the terminal shock wave. (The terminal shock wave is
located in the region where the pressures indicate slightly supersonic to slightly subsonic flow
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P/Poo =~ 9 to 11 at Mach number 2.56.) At the lower bleed flows, the slight expansion at x/R ~ 4.25
could be caused by bleed zone 4. However, at Mach numbers 2.00 and 1.75 (fig. 49(b) and (c),
respectively), there are extensive expansion regions upstream of the terminal shock wave (e.g.,
x/R ~4.25-4.55, fig. 49(b)). Without these expansions, the compression could be accomplished
within a shorter length. In addition, at all Mach numbers, the inlet remained started with the
terminal shock wave upstream of the geometric throat. This increased the change in throat bleed,
and hence increased the inlet stability margin. At all Mach numbers, bleed zone 2 was located near
the initial adverse pressure gradient on the centerbody, which may account for the relatively good
performance throughout the Mach number range.

Static pressure distributions at angle of attack must also be considered at off-design conditions
for reasons previously discussed. Centerbody static-pressure distributions at angle of attack are
shown in figure 50 for four off-design supersonic Mach numbers. (The pressures at positive and
negative angles are on the leeward and windward sides, respectively.) In the supersonic diffuser, the
pressure rise generally moved upstream and downstream on the leeward and windward sides,
respectively, although at each Mach number the gradient remained about the same. (At Mach
number 1.75, the terminal shock wave was external at positive angle of attack.) However, the
movement of the terminal shock wave was inconsistent with changing angle of attack. At Mach
number 2.56, its movement was not clearly defined (p/poo=~9 to 11); at Mach number 2.50, it
moved upstream and downstream on the windward and leeward sides, respectively (p/poo =~ 4.5
to 5.5). At Mach number 1.75, the terminal shock wave moved far upstream (p/poo = 2.5 to 3.0)
because the inlet was unstarted.

Static-pressure distributions for a single bleed configuration at each Mach number were shown
in figures 49 and 50. Distributions for different bleed configurations at a constant Mach number can
be important for control system analysis. Results from three bleed configurations are shown in
figure 51 for Mach number 2.41 and 0° angle of attack as the terminal shock wave moved upstream.
The compression was not particularly efficient for any configuration, since there were expansion
regions or plateaus (x/R =~ 4.2 to 4.6) upstream of the terminal shock wave (p/poo=>~7 to 9).
However, the pressure distributions probably are most favorable with the throat bleed upstream
(fig. 51(a)), because there was no subsonic flow upstream of the pressure rise through the terminal
shock wave (p/peo =~ 7 to 9). This configuration also had the lowest supercritical bleed flow (0.05 at
91-percent pressure recovery) and the largest change in bleed from this point to critical conditions;
hence, it had the largest stability margin.

Bleed mass flow and pressure recovery— Calculation of bleed drag requires the mass flows and
corresponding plenum chamber pressure recoveries for each zone. The mass flows are shown in
figure 52 for the Mach number range 2.56 to 1.75. The bleed exit areas were not changed from
those at Mach number 2.65 because variable exits will probably not be part of an operational
system. At the higher Mach numbers (Mo > 2.41), where the centerbody bleed was concentrated
for good performance, the mass flow changed through all zones as the terminal shock wave moved
upstream. At the lower Mach numbers (Moo < 2.30), where the centerbody throat bleed was moved
downstream for good performance, the mass flow through zone 2 did not change. In addition, the
change in mass flow through zone 1 decreased. These effects reduced the change in total bleed flow
from supercritical to critical conditions and hence, reduced the inlet stability margin from that at
the higher Mach numbers.
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The bleed plenum chamber pressure recoveries, corresponding to the mass flows just discussed,
are shown in figure 53. As at the design Mach number, these recoveries were somewhat low (see
design Mach number discussion), and they show that operation of the inlet at less than maximum
pressure recovery, thereby providing some stability margin, decreases the operating bleed plenum
chamber pressure recovery considerably. For instance, at Mach number 2.56 (fig. 53(a)), if
operation at 91-percent pressure recovery is needed for the required stability margin, bleed zone 1
will provide about 0.20 plenum chamber pressure recovery (0.10 less than the highest measured
value).

Bypass— The previous discussion considered only results with the bypass exit closed. However,
small bypass mass flows are generally required for inlet-engine matching at off-design supersonic
Mach numbers; in addition, large mass flows might be required for matching in the event of an
engine malfunction. Therefore, good inlet performance is important for a wide range of bypass mass
flows. The inlet performance with bypass, as a function of the mass-flow ratio at the engine face, is
shown in figure 54 for the Mach number range 2.30 to 1.75. At a constant pressure recovery, the
bypass mass-flow ratio is the increment between any curve with bypass and the curve for zero
bypass. Maximum (critical) pressure recovery was nearly constant at each Mach number for small
bypass mass flows (Abpe/Ac§0.08l) and decreased for large mass flows. The corresponding
distortion generally increased with increased bypass. At a constant supercritical pressure recovery
(e.g., 91 percent), distortion was generally constant for all bypass mass flows.

Operation with bypass will increase the inlet drag. The momentum drag penalty can be
calculated with the bypass mass flows and plenum chamber pressure recoveries shown in figure 55,
although it was not done in this investigation. However, the data show that the plenum chamber
pressure recovery increased with increased mass flow (at a constant pressure recovery) and thus
increased the available momentum. This occurred mainly because a greater percentage of the high
energy core flow was removed as the mass flow increased.

Transonic Performance

To deliver the high mass-flow ratio provided in the design to the engine face, all transonic
testing was done with the bleed exits closed. In addition, because vortex generators were found to
cause performance penalties, most data were obtained without them.

The performance at 0° angle of attack without vortex generators is shown in figure 56. Of the
indicated positions of the cowl lip, the highest theoretical mass-flow ratio (noted on each figure)
occurred with xh-p/R =3.881: with x;»/R = 4.088, the cowl lip was at the station of maximum
centerbody diameter. Mass-flow ratios as high as the theoretical maximums were not measured at
any Mach number. However, the blockage of the rakes for measuring mass flow was about 1 percent
of the throat area. Since no correction was made for this blockage, the inlet may actually have
captured nearly the maximum theoretical mass-flow ratio.

When operating at maximum mass-flow ratio, distortion is high and the pressure recovery
relatively low, and therefore, an actual inlet would probably have to operate at a reduced mass-flow
ratio. If operation was restricted by some arbitrary distortion limit, say 15 percent, the mass-flow
ratio would be about 0.57 at Mach number 1.0, and about 0.64 at Mach number 0.6, or 0.02 and
0.06 less than the theoretical maximums, respectively. In addition, as the mass-flow ratio decreased,
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the additive drag increased because of increased spillage, which theoretically is offset by lip suction.
However, lip suction was not measured experimentally.

A comparison of the transonic performance with and without vortex generators is shown in
figure 57 for the cowl lip position with the largest mass-flow ratio XJip/R = 3.881. At reduced
mass-flow ratios, vortex generators decreased distortion slightly and were somewhat more effective
at the higher Mach numbers. However, at higher mass-flow ratios, where the inlet would normally
operate, there was little or no change in distortion with vortex generators. In addition, vortex
generators reduced the pressure recovery, but at maximum mass flow the curves do tend to
converge.

As for supersonic Mach numbers, pressure recovery and distortion must be acceptably high and
low, respectively, at angle of attack. These parameters are shown in figure 58 for angles of attack up
to 8°. Since mass-flow ratio could not be measured accurately at angle of attack because of flow
asymmetry, it was assumed constant at the values measured at 0°. For this reason, the mass-flow
ratios at 5° and 8° angle of attack are questionable. As the angle of attack was increased, pressure
recovery decreased and distortion increased, and these effects increased with increasing Mach
number.

The transonic distortion data previously shown were with the rakes at the engine face in a
fixed position (6, =0°). Total pressure profiles at constant radii, plotted from many circumfer-
ential measurements from the rotating rakes, are shown in figures 59 and 60 for Mach numbers 0.8
and 1.0. (Again, pressures at 60°, 180°, and 300° are considered static.) If all pressures (except
those behind the struts) were used in computing distortion, it would be higher than indicated on
each figure. For example, at Mach number 1.0 and 0° angle of attack (fig. 60(a)), the indicated
distortion is 0.123; using all pressures it is 0.193 and is relatively constant at all angles of attack.
However, the number of low-pressure regions increased with increasing angle of attack. With either
method of calculation, the distortion at both Mach numbers was higher at 5° than at 8° angle of
attack.

CONCLUDING REMARKS

A large-scale model of an axisymmetric inlet system, designed for isentropic compression
supersonically and a large mass-flow ratio transonically, was tested. The effect of bleed and vortex
generator configuration, bypass, angle of attack, etc., on the internal performance was measured.

There was good performance throughout the supersonic Mach number range only when the
bleed and vortex generator configurations were changed. The inlet throat was nearly stationary
relative to the cowl (i.e., it moved downstream relative to the centerbody) as the cowl was retracted
for off-design operation. Thus, the performance was good throughout the supersonic Mach number
range only when the centerbody throat bleed was moved downstream. In general, however, the
performance was best when this bleed was upstream of the geometric throat. At the higher
supersonic Mach numbers (2.41 to 2.65), the performance was best with a relztively dense spacing
of vortex generators just downstream of the throat. At the lower supersonic Mach numbers (1.55 to
2.30), however, the vortex generators were in the supersonic flow field because the throat moved
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downstream on the centerbody as the cowl was translated, and therefore the performance was
better without vortex generators.

At transonic Mach numbers (0.6 to 1.1), the bleed exits were closed so that the high mass flow

included in the design would be delivered to the engine face. In addition, as at the lower supersonic
Mach numbers, the performance was better transonically without vortex generators.

With the best bleed and vortex generator configurations, the following results were obtained:

. With moderate boundary layer bleed in the supersonic diffuser (11pj/meo =~ 0.02 to 0.035 in

zones 1 and 2), distributed on the cowl and centerbody in the regions of adverse pressure
gradient, measurements indicated that most of the flow at the inlet throat had been compressed
isentropically at all supersonic Mach numbers (1.55 to 2.65).

With bleed in the throat region, total-pressure recovery at the engine face and bleed mass-flow
ratio increased as the terminal shock wave moved upstream, thus providing an inlet stability
margin to unstart at all Mach numbers.

At supersonic Mach numbers 2.65 and 2.60, maximum total-pressure recovery at the engine face
was greater than 94 percent with a corresponding bleed mass-flow ratio of approximately 0.08
and a corresponding total pressure distortion of less than 10 percent. At lower supersonic Mach
numbers (1.55 to 2.56), maximum total pressure recovery was in the range of 92 to 96 percent
with bleed mass flow ratios from 0.045 to about 0.09. For these Mach numbers, corresponding
distortion was about 10 to 15 percent.

At transonic Mach numbers (0.6 to 1.1), total pressure recovery at the engine face ranged from
90 to 93 percent and the corresponding total pressure distortion from 20 to 30 percent when the
inlet was operated at maximum mass-flow ratio (m;j/meo = 0.59 for M = 1.0). However, when the
mass-flow ratio was reduced by 0.02 to 0.06 for Mach numbers 1.1 to 0.60 respectively, pressure
recovery increased to about 96 percent and distortion decreased to about 15 percent.

If operated at Mach number 2.65 and 0° angle of attack, with a stability margin of about 0.07,
the inlet remained started without changing geometry at angles of attack up to about 2. 5° with
bleed distributed in the supersonic diffuser; with bleed concentrated in a relatively small region,
the inlet unstarted at about 1°.

Ames Research Center
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APPENDIX A

ESTIMATION OF THE MAXIMUM TRANSONIC MASS-FLOW RATIO OF AN

AXISYMMETRIC-SUPERSONIC INLET WITH A TRANSLATING CENTERBODY

For axisymmetric supersonic inlets that achieve the required area variations for operation
throughout the Mach number range by extending the centerbody, equations for calculating the
highest transonic mass-flow ratio that could be included in the design, and the internal dimensions
necessary for this result, can be derived from geometric considerations at the design Mach number
and at Mach number 1.0. The sketch shows the internal dimensions that must be considered in the
derivation. (Note the centerbody has been split to show the geometry at both Mach numbers.)

Bow shock wave Cowl

Throat
R

!

Mdesign y

{

"t
"max
]

r'min TSupport tube and
centerbody bleed removal

M=1.0—e

Initial cowl angle = O°

Two geometric considerations are necessary for the derivation: (1)at the design Mach
numbers, the critical dimensions (7,,4x. 7min) Mmust be longitudinally alined and the inlet throat
must be located at that station; and (2) for transonic operation, the contouring of the centerbody
must terminate upstream so that the critical cowl dimension () is longitudinally alined with the
centerbody support tube (r¢).

At the design Mach number, the inlet contraction ratio (C) is defined by:

(A/A*)Mdesign Ptihroat R?
5= C s (A1)
OMihroat  * too ¥ min —"max

4/A
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At Mach number 1.0, the throat area ratio is defined by:

Ot Q]

A constant K (<1) is introduced so that the area downstream, at the location of the minimum
cowl radius (75 ), does not become the throat due to boundary layer growth.

A simultaneous solution of equations ((Al) and (A2)) eliminates r},;;, and the resulting
equation, when substituted in the left side of equation (A2) and rearranged, gives the equation for

the transonic area ratio:
4o __k |ct1_(nY

The contraction ratio (C) is calculated from the desired flow conditions in the throat at the
design Mach number. The support tube area ratio (r;/R.) is usually sized from the anticipated
centerbody boundary-layer bleed mass flow, pressure recovery, and Mach number; data are available
for the Mach number range 2.5 to 3.5 (refs. 1-3), so that these quantities can be estimated. The
constant K that allows for transonic boundary layer is not so easily determined. However, if the
support tube radius is oversized by say 4 percent, the transonic mass-flow ratio will be decreased by
only 2 percent (K appears as K/(K + 1) in the formula). After these quantities are specified and the
transonic area ratio calculated, the critical dimensions (r,,4x, Fmin) required for this result can be
calculated from equation (A2).

Large rates of change of surface slope with distance must be avoided and off-design area
distributions must be considered. However, any reduction in the transonic area ratio can be
somewhat compensated with a positive initial cowl angle as was used for the present design. The
following quantities were used in the calculations for the present design:

C = 2.90* *(Calculated from Megjon = 2.65, Mihroat = .25 Pthroat _;
K=0.97 Ptoo

r, _

7 =036

The calculated and actual design values of the transonic area ratio and critical dimensions are
compared in the table below.

Actual

Calculated design

AylA, 0.598 0.5956
Fmax/R 633 6481
Fomin/ R 864 8645
Initial cowl angle 0° 1.5°
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APPENDIX B

EFFECT OF CHANGING THE COWL CONTOUR TO ACCOUNT FOR THE

BOUNDARY-LAYER DISPLACEMENT THICKNESS

At Mach number 2.65 the experimental surface pressures and gradients in the supersonic
diffuser were greater than predicted by inviscid theory. This was attributed to the effects of
boundary-layer displacement thickness. In an attempt to obtain better agreement between the
inviscid theoretical and experimental distributions, the cowl was modified to compensate for the
boundary-layer displacement thickness which was calculated with the aid of the computer program
of reference 8, as shown in figure 61. Also shown are the regions for laminar, transitional, and
turbulent boundary layers, and the location and thickness of material actually removed from the
cowl. (The location for the start of transition was a required program input. For the centerbody,
this was based on sublimation studies and for the cowl, on data from ref. 9 for flat plates.) Full
compensation was not carried through all the way to the throat to avoid changing the contraction
ratio, and thereby maintain comparable tunnel shock wave losses. Instead, the compensated contour
was faired from x/R = 2.950 into the uncompensated contour at x/R = 3.800. No compensation
was included in the centerbody contours because of model structural considerations.

The effect of the compensation on the pressure distributions on the cow! and centerbody are
shown in figure 62. Some differences in the measured pressure distributions are seen, but the
agreement with the inviscid theory is considered unimproved.

The effect of the compensation on the performance at the engine face is shown in figure 63.
Pressure recovery as a function of bleed mass-flow ratio was approximately the same for both
contours; the corresponding distortion was higher and the unstart angle of attack was slightly lower
for the compensated contour. The differences in pressure recovery and distortion were attributed
principally to the difference in vortex generator length (fig. 8) while the change in oy, was attributed
to unfavorable differences in pressure distribution in the supersonic diffuser.

The effect on performance of adding boundary-layer compensation to the centerbody is not

known. It is believed, however, that small additional changes in the contour would have small effects
on the engine-face performance so long as the contraction ratio is not changed.
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TABLE 1. — INLET COORDINATES

Centerbody

X X X £

R R R R
0 0 4.000(0.6460
Straight taper 4.050|0.6477
2.560 (04055 4.088|0.648|
2.6500.4202 4.125|0.6477
2.750|0.4367 4.175|0.6461
2.850]0.4540 4.225(0.6437
2.950|0.472I 4 300/|0.638|
3.050 |0.4907 4 .400|0.6285
3.150 |0.5103 Straight taper
3.250 [0.5301 4.750{0.5916
3.350(0.5509 4 .850/0.5793
3.450|0.5721 4.950(0.5640
3.550(0.5940 5.050 | 0.5468
3.650 |0.6140 5.150 {0.5289
3.700(0.6218 5.250/0.5066
3.750|0.6278 | |5.350|0.4807
3.800(0.6329 5.400 |0 4640
3.850|0.6370 5.450|0.4430
3.900} 0.6407 Straight taper
3.950|0.6437 5.650/0.3600

Straight line
8.565|0.3600

r
- max

Cowl

TR IF|F
o 1.000 1.750|0.8806
Straight taper 1.80010.8758
0.175|1.0046 1.833/0.8738
0.250(1.0062 Straight taper
0.325|1.0073 2.000]0.8662
0.375|1.0077 2.02510.8652
0.425}1.0078 2.050(0.8647
0.500( {.0074 2.075|0.8645

0.575]1.0062 Straight line
0.650( 1.0042 2.17510.8645
0.725|1.001! 2.275|0.8655
0.800{0.9972 2.475]0.8700
0.875]0.9921 2.675|0.8760
0.950{0.9862 2.875|0 .8821
1.02510.9792 3.07510.8905
1.100]0.9712 3.175]0.900!
1.175]0.9622 3.375{0.9295
1.250|0.9520 3.575|0.9582
1.350(0.9379 3.675(0.9675
1.450]0.9235 3.77510.9733
1.550{0.9093 3.875(0.9766
1.650(0.8949 3.975]0.9784
1.700(0.8875 4.16510.9800

Straight line
Engine face —|4.475|0.9800
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TABLE 2. — STRUT COORDINATES

> >
g QO 2 '8 @ [V
£o S S5 S
23 —Qa LG _a
SE 3§ 5§ 3§
Q L ol QO 2 O 2
Xst | Yst | Yst Xst | Yst | JYst
R R R R R R
0 [0.0458]0.0458 0.90 {0.0760|0.0931
0.10 |0.0620]0.0620 1 .00 1{0.0552|0.0885
0.20 [0.0783|0.0783 1.10 [0.0190]0.0830
0.30 |00899/0.0899 1.142 —_—
0.40 [0.0965j0.0965 {.20 | —— {0.0751
0.50 |0.0997(0.0997 .30 | — |0.0649
0.60 |0.0999;0.0999 1.40 | — |0.0510
0.70 [0.0955]{0.0988 1.50 | —— [0.0285
0.80 [0.0884]0.0967 |.592| — 0
Template of strut
< —; endpricte at the
centerbody
y X
Dol L P
Template of strut
|
__< "1 endplate at the
[} _/ cowl




TABLE 3. —~ MACH NUMBERS, BLEED, AND VORTEX GENERATOR CONFIGURATIONS

Bl'd,
Ratnf A c B—I |B-4| B~=1 | B-2| B—3 B—4
M
[0 0]
AACC,
2.65 00 AA | AA, DA
2.60 AA AA | AA, DA
80, CO,
2.56 | —— | —— | BB,80,00| —— CC.00
AA, BB, BO, CO,
BO, CO,
2.4 || —— | — [BB,B0,00| —— cc.oo| ©0 |0B,0B,00
230 | —— | —1| BB,00 |—— | ——| 00 {0B,DB,00
2.25 | —— | —— AA DB _—_
2.20 00 |0B,DB,00
2.15 DB _—
2.10 00 |OB,DB,00
2.05 OA | — | —— DB 0A,00
0A,08B,0C
200 ff —— | —— AA OA |—— | —— |0B,DB,00 BB, CC.00
1.95 0A OA,00
0A,0B,0C
1.90 OA BB, CC,00
i.85 0A OA,00
1.80 00
0B, 0C
.75 | —— | —— AA BB,CC,00
1.70 0B, 00
1.5 f ——— | —— AA ocC
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TABLE 4. — INDEX TO FIGURES

Figure Description

Model photograph

Model geometry

Design flow field

Area distributions

Throat location

Contraction ratio

Bleed patterns

Vortex generator configurations
Theoretical mass flow

Bleed development, Moo = 2.65
Pitot pressure profiles, Mo = 2.65

HW N -

-0V 00NV

[y

12-33  Design performance, Meo 2.65 and 2.60
12 Supersonic diffuser performance, Meo = 2.65
13 Supercritical performance, various x lip/Ra M_=2.65
14 Supercritical performance, various x lip/Rs M_ =260
15 Supercritical performance, various bleed back pressures, Moo = 2.65
16 Transient disturbance performance, Moo = 2.65 and 2.60
17 Distortion at angle of attack, Moo = 2.65
18 Static-pressure distributions, Meo = 2.65 and 2.60
19 Static-pressure distributions at angle of attack, Moo = 2.65
20 Effect of Mach number on static-pressure distributions
21 Individual bleed zone flow, Moo = 2.65
22 Individual bleed zone flow, Moo — 2.60
23 Individual bleed plenum pressures, Moo = 2.65
24 Individual bleed plenum pressures, Meo = 2.60
25 Effect of back pressure on the cowl bleed flows, Moo = 2.65
26 Supercritical performance with bypass, Moo = 2.65
27 Supercritical performance with bypass, Moo = 2.60
28 Bypass mass flow and plenum pressures, Moo =2.65
29 Bypass mass flow and plenum pressures, Moo = 2.60
30 Distortion at angle of attack, Moo = 2.65
31 Supercritical performance, various vortex generator configurations, Mo = 2.65
32 Supercritical performance, various vortex generator configurations, Meo = 2.60
33 Radial distortion, various vortex generator configurations, Moo = 2.65

34-55  Off-design performance, Moo = 2.65-1.55
34 Maximum performance with various bleed patterns
35 Supercritical performance with various bleed patterns
36-44 Supercritical performance with various vortex generator configurations
45 Radial distortion profiles
46-47 Circumferential distortion profiles
48 Transient angle of attack performance
49-51 Centerbody static pressure distributions
52 Supercritical bleed flow, individual zones
53 Bleed plenum chamber pressure recovery, individual zones
54  Supercritical performance with bypass




55

56-50
56
57
58

59-60

TABLE 4. — INDEX TO FIGURES — Concluded

Bypass mass flow and plenum chamber pressure recovery

Transonic performance, M, = 0.6-1.1

Performance without vortex generators
Performance with vortex generators

Performance at angle of attack

Circumferential distortion profiles at angle of attack
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The position of the rotating engine- face rake assembly is
designated by 8, with the 0° position as shown below.

T
®  (8,:0)
+0, A
2 Rake |
..?3‘6 .
',60‘
ve 0 1) 0
X \ 2 (7 Strut (typ)
\ \
3 7560 6
(o]
£ -0980 40%?"‘/
R &h 03¢
027 2 6>
0.%‘3 ‘;\’b N
A )O
0 A N /4
o NN
g N
60° NN
NN .
N 3
p) N\ 5

(c) Engine-face tube locations (looking downstream).

Figure 2. — Concluded.
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Figure 5. — Variation in inlet throat location with changing cowl position.

/

|

Centerbody

S

e

] L

—— Maximum centerbody diameter

1

2.2 2.6

3.0
X"p/R

3.4

3.8

4.2

39



v

‘uonyisod [mod SuiSueyd YIIM OIJBI UOIIIBIJUOD J9[UI UT UOTIBLIBA — 9 aim3iyg

8'¢

ve

u /%

o¢

9¢

AN

0?2

ve

uy/ Oy

AN 82

2t

40




£=00125

(all holes) b_
-E-O.0322b
E=O.0I86
0 OOO
(o}
(o} OOO
m—h Cowl
¢ _ @ 4 ¥
®°8 T =2 3
n o ~ g
1. 38 85 3%
T 2] | T < <<
/—l’Tk_—do I CCn'Obedy
O o 000

ol ©
"
(@)
[e}
ol
-~
~N

\,
\ Bleed divider (typ)

Bleed configuration A

b,
R 0.0744
c)Zone | o _L)
(o] N
° 2R
T\T_ _T\ § Zone 3
| x
©® o ~ ula
"53] o o0 ~
nwn ~ ~ @
n N [ Ne) <
R o 32 §
nls' T T <
/ = (o] © $—l I
O © (o]
o o Zone 4
Zone 2

Bleed configuration C

(@) M, =2.65and 2.60
Figure 7. — Bleed configurations.

41



‘popnouo) — L aIngig

§9'70165 1 =" (D

t-1 suoydas ‘g puo g suoyounbiyuod pasig

Apoqiajuan

v 3uozZ 2 auoz
P uolodsg ¢ Z v I
T 4 Y
N\.m00|d.
mo ILI
-]
. o]
i 00080 }
o o » s s b H b .bw% Py b S|
N o) ® ~ o O N o (o] = =
. 5 = 3 g 52 °88 S8 & X
oo N o oooooe » Y
m.u../_s S © Jocade &
| ]
, o3 No
¢ a8uoz m %
MO (o}
IM0D o Mowo o} Mooo
$ 8uoz ‘uol}oes (dA4) Japialp pesig (0] °5%06 o
pajodipul ul uado S3OH @ y *
Aluo g ‘uado sa3joy |DuOI}IpPPY @ (S804 1iv) S2l00=¢ ~_H
' : ¢¢NOO-M
8 puo g ‘uado s3loH O
| 3uoz

t @uoz ‘uado uoljdoag

L}
c-.8
uoHDI14UBP|

42




62 b-0079

N I~
N
N Approx. NACA
N 0012 airfoil
\
N b
Ne—s| 20050 TR0 b.oo7s

a) Configuration A

‘,%=0.079 b Approx
N R:-0.237 0012 airfoil
N
J b
N §=0.075
N
b _

Ne—={ 2 =0.050

b) Configuration B

N

N N Alternate centerbody
N N location onl
N N y
N N (See fig 2b)
N b N b
~N D _ D _

o] 2 =0.033 Ne—=s] =:0063

c) Configuration C d) Configuration D

(Spacing same as A) (Spacing same as A)

e) Configuration O Identification

(No vortex generators)

Centerbody configuration
BC
Cowl configu:nionx

Figure 8. — Vortex generator configurations.

43



NIEREAN

07
/

3.6

\:\\\\\\\

» \
. Mg |.55\A\\ \\\k
175"

TN

&

mmmmm




14 o)
Subsonic flow (p, /p, =1.0)
t "Pte Eh
4
ANNN NN
10
10 o)
8]
O
o o]
8 .
oY =
~
g f J NN
- - 5.0 o ey N
O 7 N\
6 : / T} :
VAN 4 |3"|‘
/ 2
L A " Theory Experiment
x .
Peo 9/‘5) 2P 2325
4 <7 R
/ / Centerbody ——— @]
,L/ Cowl EE—— O
—— 5/ [ I
O // Bleed zone | -
2 . , Zone divider (typ)
—r~ {40 % porosity) |
\‘v
; << SO
© N\ . am
/\Theoretical
N \ characteristics
@ /\\/\ lines (inviscid)
_— > 4 Centerbody
(40%) (5%)
3.3 35 37 39 4.\ 43 4.5

x/R

(a) x;/R = 2.364, CR = 2.870

Figure 10. — Static-pressure distributions in the supersonic diffuser with various bleed configura-
tions; Moo = 2.65,a = 0°.

45



14
O
. S 0]
b fl / = 1.0)
Subsonic flow (p, Pl o
12
ANNNANE o
10 O
o,
lg 0]
8
TN
o -
ol
//
6 /G 7
0)
1L 7/ / Theory Experiment
P Vj:}/ Xjip
— =2.325
A 0.3 R
/ // Centerbody ——— O
Qs Cowi —_— O
— // Bleed | l I ]
eed zone i
Z der (t
2 O______J‘-r}« (40 % porosity) one divider {typ)
— T ¢ 3(5%)
\ < §, *j | M%E e ad o B I
~] \ S Cow
0 AN
2 L
/ |_Theoretical
™~ S characteristics
Z \\/\ /\ lines (inviscid)
— > Centerbody
(40 %)
3.3 35 37 39 4. 43 4.5
x/R

46

(b) xlip/R =2.325,CR =2.900

Figure 10. — Continued.
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(a) Bleed configuration A.

Figure 13. — Supercritical performance for various positions of the cowl lip; M, = 2.65, a = 0°,
mbp/moo = 0, 8, = 0°, vortex generator configuration AA.

52




Pr, /Pt

[+ o]

.20

.96

(b) Bleed configuration B-1.

Figure 13. — Continued.

02 o
.92 //
s
X“p/R au* MU*
Design O 2274 1.0 262
position O 2326 1.3 2.60
-84 % O 2352 16 259
A 2379 1.8 2.58
I . 4 2405 1.4 2.59
80 . *For conditions represented
by filled symbols
3 2 0%,
2O G Sy AL
.04 .05 .06 .07 .08 .09 10
My, /moo

53



512/th

.20

Apt2

54

.92

.88

.84

.80

.76

41) _ Xjip/R ay* My*
O 2.365 0.60 2.63
O 2379 0.70 2.62
O 2392 0.75 2.62
A 2.405 0.80 2.6l
4 2418 0.90 2.61
* For conditions represented
by filled symbols
.2
. Ol .02 .03 .04 .05 .06
mbl/moo

(c) Bleed configuration C.

Figure 13. — Concluded.

.07



.96

92
Py,
Py
88 '
’ X Iip/R
O 2379
J ! O 2405
84 o P4 O 2.43|
.80
1% 0)
20 76
Ap,2 . <R
o AL
. % °a-¢° - A - A '}_0
0
05 06 07 08 09 10
mb| / mo

(a) Bleed configuration A.

Figure 14. — Supercritical performance for various positions of the cowl lip; M., = 2.60, a = 0°,
mbp/moo =0, 6, = 0°, vortex generator configuration AA.
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(c) Bleed configuration C.

Figure 14. — Concluded.
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Figure 15. — Effect of cowl bleed on the supercritical performance; Moo = 2.65, a = 0°, mbp/moo= 0,
6, = 0°, vortex generator configuration AA, bleed configuration A, xh‘p/R =2.352.
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Figure 19. — Cowl static-pressure distributions at angle of attack; My, = 2.65, bleed configuration A,
xlip/R =2.325.
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Figure 20. — Effect of Mach number on the centerbody static-pressure distributions; a = 0°, bleed

configuration A, xh-p/R =2.325.
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(a) Bleed configuration A, xk-p/R =2.325.

Figure 26. — Supercritical performance with bypass; M, = 2.65, a=0°, 8, = 0°, vortex generator
configuration AA.

81



82

.98

94 3 Y ¢
SEERIEY
ARELARE )
\ \.
) ]
S \ \ o
- g oolzz)c43 \ ‘l‘ J‘H
¢ oo | | ]
o 4 01623 \ 1 “:[
s, 4

5 .6 N .8 .9 1.0

(b) Bleed configuration B-1, xh-p/R =2.352.

Figure 26. — Continued.
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(c) Bleed configuration C, xﬁp/R = 2.405.

Figure 26. — Concluded.
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Figure 27. — Supercritical performance with bypass; M, = 2.60, o = 0°, 8, = 0°, vortex generator
configuration AA, bleed configuration B-1, x lip/R = 2.405.
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(a) Bleed configuration A, xlip/R = 2.325.

Figure 31. — Effect of vortex generator configuration on the supercritical performance; Mo, = 2.65,
a=0°, Mpp/Meg = 0,0, = 0°.
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(b) Bleed configuration B-1, xh-p/R =2.352.

Figure 31. — Concluded.
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Figure 32. — Effect of vortex generator configuration on the supercritical performance; M, = 2.60,
a=0°, mpp/Me, = 0,8, = 0°, bleed configuration B-1, xlip/R = 2.405.
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Figure 34. — Maximum performance with various bleed configurations; a = 0°, 0, = 0°, vortex

generator configuration 00.
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Figure 35. — Supercritical performance with various bleed configurations; o= 0°, mbp/"”oo =0,
6, = 0°, vortex generator configuration 00.
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Figure 35. — Continued.
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(a) Bleed configuration B-1.

Figure 36. — Supercritical performance with various vortex generator configurations; M., = 2.56,
a=0° mbp/moo: 0,6, =0° xh-p/R =2.509.
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(b) Bleed configuration B-1.

Figure 36. — Concluded.
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(a) Bleed configuration B-1, xh-p/R =2.562.

Figure 37. — Supercritical performance with various vortex generator configurations; M, = 2.50,
a=0° mpp/m,,=0,6, =0°.
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(b) Bleed configuration B-1, xlip/R =2.562.
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(c) Bleed configuration B-3, xh-p/R =2.549,

Figure 37. — Concluded.
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(a) Bleed configuration B-1, xh-p/R =2.693.

Figure 38. — Supercritical performance with various vortex generator configurations; M =241,
a=0°mpp/m,=0,6, =0
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(c) Bleed configuration B-3, xlip/R = 2.706.

Figure 38. — Concluded.
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Figure 39. — Supercritical performance with various vortex generator configurations; M., = 2.30,
a=0° mbp/moo =0,0, =0° xlip/R =2.955, bleed configuration B-3.
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Figure 40. — Supercgitical performance wioth various vortex generator configurations; M., = 2.20,
a=0", mpp/mg, = 0,0, =0, xp;,/R = 3.099, bleed configuration B*3.
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Figure 41. — Supercritical performance with various vortex generator configurations; Mo, = 2.10,
a=0° mpp/me, =0, 0, = 0°, xlip/R =3.229, bleed configuration B-3.
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Figure 42. — Supercritical performance with various vortex generator configurations; M, = 2.00,
a=0° mpp/m,,=0,0, =0°, Xjip/R = 3.373. :
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Figure 42. — Concluded.
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Figure 43. — Supercritical performance with various vortex generator configurations; M, = 1.90,
a=0° mpp/my,=0,0, = 0°, XJip/R = 3.478, bleed configuration B4.
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Figure 44. — Supercritical performance with various vortex generator configurations; M, =1.75,
a=0° mpp/me, = 0,0, = 0°, xlip/R =3.583, bleed configuration B4.
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Figure 48. — Performance with changes in angle of attack; mbp/mw= 0, 6, = 0°, vortex generator
configuration 00.
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Figure 49. — Centerbody static-pressure distributions; a = 0°, Mpp/Me, = 0.
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Figure 49. — Continued.
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Figure 49. — Concluded.
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Figure 50. — Centerbody static-pressure distributions at angle of attack, vortex generation
configuration 00.
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Figure 54. — Supercritical performance with bypass; «=0°,0, = 0°, vortex generator
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Figure 54. — Continued.
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Figure 56. — Transonic performance; o= 0°, M pi/Moo=0, M bp/Moo =0, 6, =0°, vortex generator
configuration 00,
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Figure 63. — Performance at the engine face with and without boundary-layer compensation;
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M, =2.65a=0° xh-p/R = 2.325, bleed configuration A.
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